PKPD Model Application in Homogeneous/Heterogeneous Conditions

#### Jong Hyuk Byun

Department of Mathematics, College of Natural Sciences, Pusan National University, Busan 46241, South Korea

\* e-mail : maticax@pusan.ac.kr



#### 2023 PAGK Annual Meeting

### Motivation





Ningbo Liu et al.

#### Tumor delays induced by treatment

Mathematical modeling

### PK model: Measure drug concentration C from dosing regimens





Reproduction of Simeoni et al. study

## PD modeling: Dose-response curve

#### **Dose-response curve**



#### Sigmoid Emax model

$$E = \frac{E_{max}C^n}{ED_{50}^n + C^n}$$

- *E*: Drug effect
- *ED*<sub>50</sub> : Half maximum
   concentration (*EC*<sub>50</sub>, *IC*<sub>50</sub>)
- *C*: Drug concentration
- *n* : Hill coefficient
- $E_{max}$  : Maximum Response

# Outline

# 01

#### TRANSIT COMPARTMENT MODELS (TCMS) -ERLANG DISTRIBUTION

02

TCMS -COXIAN DISTRIBUTION -MITTAG-LEFFLER DIST. 03

RESULTS

## Transit compartment model (TCM)



Transit compartment model describes the way

in which drugs inhibit the growth of tumors.

• 
$$\frac{dv_1}{dt} = \frac{kg_{ex}\left(1 - \frac{TV}{V_{max}}\right)}{\left(1 + \left(\frac{g_{ex}}{kg}TV\right)^{\phi}\right)^{\frac{1}{\phi}}} - k_1 \cdot E(t) \cdot v_1$$
  
•  $\frac{dv_2}{dt} = k_1 E(t) \cdot v_1 - \frac{1}{Tau} \cdot y_1(t)$   
•  $\frac{dv_n(t)}{dt} = \frac{1}{Tau} \left(v_{n-1}(t) - v_n(t)\right), n = 2, 3, \cdots$ 

## TCM is widely used in PKPD study

- Tumor inhibition (delay) induced by drug administration is determined by
- (i) Tumor growth (PK model Drug effect TCM (first equation))
- (ii) Number of transit compartments in TCM ( $v_n(t)$ )
- How do we determine (ii) ?
- In addition, using (i) and (ii), can we capture various tumor delays?

## **Fractal PK**

• Fick's law says ``the change of amount of drug per unit area per unit time is proportional to the change of concentration" i.e.,

$$\frac{dM}{dt} = -k_V(C_1 - C_2)$$

$$\frac{dC}{dt} = -k_e C$$



- Some drugs do not follow Fick's law.
- For diffusion-limited reaction, fractal kinetics is used

$$\frac{dC}{dt} = -k_e C^n$$
 or  $\frac{dC}{dt} = -k_e(t)C$ 

OK. could we apply this concept to tumor models?



## Capturing tumor delay caused by drug

Age-structured model: McKendrick (1926) and Von Foerster (1959) model

$$\frac{du}{dt} = k_{in}(u, w) - k_{out}(C, u)$$
$$\frac{\partial \phi}{\partial t} + \frac{\partial \phi}{\partial a} \cdot \frac{da}{dt} = -\mu(a, C)\phi(a, t)$$

- u : proliferating cells,  $u(0) = u_0$   $\phi(a, t)$  : damaged tumor cells (age)

- C = C(t): drug concentration
- w = w(t) = u + y: Total tumor cells
- $y(t) = \int_0^\infty \phi(a, t) da$ : Total damaged tumors cells
- $\phi(0,t) = k_{out}(C,u)$ : Boundary condition  $\phi(a,0) = 0$ : Initial condition

## Modeling for capturing the delays



Particles stay for time t - a and are removed at age a.

## TCM derivation

Using Erlang distribution,

$$F_n(a) = \frac{(k_1 a)^{n-1}}{(n-1)!} \cdot k_1 e^{-k_1 a}$$

Erlang distribution represents time distribution when n events happen



TCM model using linear trick  

$$y = y_1 + \dots + y_n \text{ and } y_n = E_n(t) = (k_{out} * f_n)(t)$$

$$\frac{du}{dt} = k_{in}(u, w) - k_{out}(C, u)$$

$$\frac{dy_1}{dt} = k_{out}(C, u) - k_1 \cdot y_1(t)$$

$$\frac{dy_2(t)}{dt} = k_1(y_1(t) - y_2(t))$$

$$\vdots$$

$$\frac{dy_n(t)}{dt} = k_1(y_{n-1}(t) - y_n(t))$$

*Ok.* TCM is derived using a specific probability density.

## In application: TMC integrating PKPD



TCM from Simeoni et al.



$$\frac{du}{dt} = k_{in} - k_{out}$$

$$\frac{dy_1}{dt} = k_1 \cdot C \cdot u - k_1 \cdot y_1(t)$$

$$\frac{dy_2(t)}{dt} = k_1 (y_1(t) - y_2(t))$$

$$\vdots$$

$$\frac{dy_n(t)}{dt} = k_1 (y_{n-1}(t) - y_n(t))$$

#### Ages are discretely considered as n steps

### **Coxian TCM**



Coxian density is derived from Phase distribution

$$\frac{df_1}{dt} = -k_1 f_1, \ \frac{df_i}{dt} = p_{i-1} k_{i-1} f_{i-1} - k_i f_i, \ i = 2, 3, \cdots n, 0 \le p_i \le 1$$

**Key assumption:**  $(1 - p_1)k_1 = \cdots = (1 - p_n)k_n$ ,

Letting on 
$$y_i = \frac{k_{out} * f_i}{(1-p_1)k_1}$$
.

If  $p_i = 0$ , then it returns to the Erlang TCM.

$$E_{n}(t) = k_{out} * f = \sum_{i=1}^{n} (k_{out} * f_{i})(t)$$
$$\frac{dy_{1}}{dt} = k_{out}(C, u) - k_{1}y_{1}, \cdots, \frac{dy_{i}}{dt} = p_{1}k_{1}y_{i-1} - k_{1}y_{i}$$
$$\frac{du}{dt} = k_{in}(u, w) - k_{out}(C, u), \frac{dy}{dt} = k_{out}(C, u) - E_{n}(t)$$

### **Coxian TCM**

Coxian density is derived from Phase distribution

$$\frac{df_1}{dt} = -k_1 f_1, \ \frac{df_i}{dt} = p_{i-1} k_{i-1} f_{i-1} - k_i f_i, \ i = 2,3, \cdots n. \ 0 \le p_i \le 1$$

- Some cells may be removed without age-stages.
- Relax the condition that is number of transit compartments

Key assumption: 
$$(1 - p_1)k_1 = \cdots = (1 - p_n)k_n$$
,

Letting on 
$$y_i = \frac{k_{out} * f_i}{(1-p_1)k_1}$$
.

If  $p_i = 0$ , then it returns to the Erlang TCM.

$$E_{n}(t) = k_{out} * f = \sum_{i=1}^{n} (k_{out} * f_{i})(t)$$

$$\frac{dy_{1}}{dt} = k_{out}(C, u) - k_{1}y_{1}, \cdots, \frac{dy_{i}}{dt} = p_{1}k_{1}y_{i-1} - k_{1}y_{i}$$

$$\frac{du}{dt} = k_{in}(u, w) - k_{out}(C, u)$$

$$\frac{dy}{dt} = k_{out}(C, u) - E_{n}(t)$$







• Left panel :

Change in the number of age compartments

• Right panel :

Fix the number of compartments and change in "p".



• Anormal kinetics

Anormal kinetics

- The age of a cell due to drug effect can be considered random variables with pdf f(a, t)
- To describe anormal kinetics, one may apply to sum of exponentials or stochastic models
- Beard et al (1997) showed that a power function can be represented as the sum of scaled basis ٠ function, i.e

$$t^{-\alpha} \propto \sum_{i=1}^{m} k_i^{\alpha+1} texp(-k_i t), \alpha > 0$$
 using  $t^{-\alpha} = \frac{1}{\Gamma(\alpha)} \int_0^\infty u^{\alpha-1} \exp(-ut) du, \alpha > 0$   
If is there a distribution that sum of power functions?

#### Fractional-order derivative equation (FDE) model derivation

Let 
$$E_{\alpha}(t) = \sum_{n=0}^{\infty} \frac{t^n}{\Gamma(1+\alpha \cdot n)}$$
,  $\alpha \in (0,1]$ .

Let a survival function  $S(t) = E_{\alpha} \left( -\left(\frac{t}{\tau}\right)^{\alpha} \right), \tau > 0.$ 

But density function is not likely to have a closed form.



Figure. Survival function according to  $\alpha$ . Survival function generates distribution.

wikipedia

Instead, we apply the Laplace transform,

$$\mathcal{L}_t(S(t)) = \frac{1}{s(1+(\tau s)^{-\alpha})}.$$
  
Since  $f = -\frac{dS}{dt'}$ ,  $\mathcal{L}_t(f) = 1 - s\mathcal{L}_t(S) = \frac{(\tau s)^{-\alpha}}{1+(\tau s)^{-\alpha}}.$ 

Define a kernel K(t) by  $\mathcal{L}_t(K(t)) = \frac{\mathcal{L}_t(f(t))}{\mathcal{L}_t(S(t))} = \tau^{-\alpha} s^{1-\alpha}$ 

$$\begin{aligned} \frac{du}{dt} &= k_{in}(u,w) - k_{out}(C,u) & \frac{du}{dt} = k_{in}(u,w) - k_{out}(C,u) \\ \frac{\partial\phi}{\partial t} &+ \frac{\partial\phi}{\partial a} \cdot \frac{da}{dt} = -\mu(a,C)\phi(a,t) & \frac{dy}{dt} = k_{out}(C,u) - (k_{out}*f)(t) \\ \phi(a,t) &= k_{out} (C(t-a), u(t-a))e^{-\int_0^a \mu(a)da} \longrightarrow y(t) = (k_{out}*S)(t) \\ E(t) &= (k_{out}*f)(t) \\ \mathcal{L}_t(y(t)) &= \mathcal{L}_t(k_{out})\mathcal{L}_t(S(t)) \text{ and } \mathcal{L}_t(E(t)) = \mathcal{L}_t(k_{out})\mathcal{L}_t(f(t)) \\ \mathcal{L}_t(y(t)) &= s^{1-\alpha}\mathcal{L}(y(t) - s^{-\alpha}y(t) \Big|_{t=0} = s^{1-\alpha}\mathcal{L}(y(t)). \quad \mathcal{L}_t(K(t)) = \frac{\mathcal{L}_t(f(t))}{\mathcal{L}_t(S(t))} \end{aligned}$$

$$\mathcal{L}_t(\mathbf{E}(t)) = \mathcal{L}_t(K(t))\mathcal{L}_t(y(t)) = \tau^{-\alpha}s^{1-\alpha} \cdot \left(\frac{\mathcal{L}_t(D_t^{1-\alpha}y(t))}{s^{1-\alpha}}\right) = \tau^{-\alpha} \mathcal{L}_t(D_t^{1-\alpha}y(t))$$

### Simulation of fractional TCM



For the model simulation, we should assume  $y(t), D_t^{1-\alpha}y(t)$  differentiable continuously. for satisfying semigroup property

$$y'(t) = D_t^1 y(t) = D_t^\alpha (D_t^{1-\alpha} y)$$

$$E(t) = (k_{out} * f)(t) = \tau^{-\alpha} D_t^{1-\alpha} y(t)$$
$$\frac{du}{dt} = k_{in}(u, w) - k_{out}(C, u)$$
$$\frac{dy}{dt} = k_{out}(C, u) - \tau^{-\alpha} D_t^{1-\alpha} y(t).$$

Finally, we have

$$\frac{du}{dt} = k_{in} - k_{out}$$
$$D_t^{\alpha} z = \eta \cdot C \cdot u - \tau^{-\alpha} z$$
$$D_t^{1-\alpha} y = z$$

# Fractional TCM captures data set







#### Fractional TCM requires fewer the number of dataset to estimate parameters



Fractional TCM requires less data to capture full data

## Thank you for your kind attention

Jong Hyuk Byun, Department of Mathematics, Pusan National University maticax@pusan.ac.kr