
PKPD Model Application in 
Homogeneous/Heterogeneous Conditions 

Jong Hyuk Byun
Department of Mathema;cs, College of 
Natural Sciences, Pusan Na;onal University, 
Busan 46241, South Korea
*  e-mail : ma;cax@pusan.ac.kr

2023 PAGK Annual Mee;ng



Motivation

Ningbo Liu et al. 

Tumor delays induced by treatment

Loibl et al. 2017

Mathema;cal modeling



PK model: Measure drug concentration 𝑪 from dosing regimens

PK model (two compartments) 

𝑑𝑞!
𝑑𝑡

= 𝑘!"𝑞" 𝑡 − 𝑘"!𝑞! 𝑡 , 𝑪(𝒕) =
𝒒𝟏 𝒕
𝑽

𝑑𝑞"
𝑑𝑡 = 𝐼𝑛(𝑡) − 𝑘$"𝑞"(𝑡) − 𝑘!"𝑞"(𝑡) + 𝑘"!𝑞!(𝑡)

Reproduc;on of Simeoni et al. study 

Dosing option



PD modeling: Dose-response curve

• E :	Drug	effect

• 𝐸𝐷%$ :	Half	maximum	

concentration	(𝐸𝐶%$,	𝐼𝐶%$)

• C :	Drug	concentration	

• n :	Hill	coefficient

• 𝐸&'( :	Maximum	Response

𝐸 =
𝐸&'(𝐶)

𝐸𝐷%$) + 𝐶)

Sigmoid	Emax	model	Dose-response	curve
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Transit compartment model (TCM)

Transit compartment model describes the way 

in which drugs inhibit the growth of tumors.

Tau: Mean residence	time
𝑽𝒊: Transit compartment

TCM

PK

Drug-response model: 𝑬 = 𝑬𝒎𝒂𝒙𝑪𝒏
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TCM is widely used in PKPD study

• Tumor inhibition (delay) induced by drug administration is determined by

(i) Tumor growth (PK model         Drug effect         TCM (first equation))
(ii) Number of transit compartments in TCM (𝑣) 𝑡 )

• How do we determine (ii) ?

• In addition, using (i) and (ii), can we capture various tumor delays?  



Fractal PK

• Fick’s law says ``the change of amount of drug per unit area per unit time is proportional to the 
change of concentration” i.e., 

𝑑𝑀
𝑑𝑡 = −𝑘5(𝐶" − 𝐶!)

• Divide volume and consider the situation yields 
𝑑𝐶
𝑑𝑡

= −𝑘7𝐶

• Some drugs do not follow Fick’s law. 
• For diffusion-limited reaction, fractal kinetics is used

.8

.0
= −𝑘7𝐶) or .8

.0
= −𝑘7(𝑡)𝐶

OK. could we apply this concept to tumor models?



Capturing tumor delay caused by drug 

𝑑𝑢
𝑑𝑡 = 𝑘9) 𝑢, 𝑤 − 𝑘:60(𝐶, 𝑢)

𝜕𝜙
𝜕𝑡 +

𝜕𝜙
𝜕𝑎 R

𝑑𝑎
𝑑𝑡 = −𝜇 𝑎, 𝐶 𝜙 𝑎, 𝑡

• 𝜙(𝑎, 𝑡) : damaged tumor cells (age)• 𝑢 : proliferating cells, 𝑢 0 = 𝑢$

• 𝜙 0, 𝑡 = 𝑘:60(𝐶, 𝑢) : Boundary condition • 𝜙 𝑎, 0 = 0 : IniGal condiGon  

• 𝐶 = 𝐶(𝑡): drug concentration

• 𝑤 = 𝑤 𝑡 = 𝑢 + 𝑦 : Total tumor cells

• 𝑦 𝑡 = ∫$
;𝜙 𝑎, 𝑡 𝑑𝑎 : Total damaged tumors cells

Age-structured model: McKendrick (1926) and Von Foerster (1959) model



Modeling for capturing the delays

By	the	method	of	characteristics,
𝜙 𝑎, 𝑡 = 𝑘:60 𝐶 𝑡 − 𝑎 , 𝑢 𝑡 − 𝑎 𝑒3 ∫3

- = > .> , 𝑡 ≥ 𝑎

𝑑𝑢
𝑑𝑡

= 𝑘9) 𝑢, 𝑤 − 𝑘:60(𝐶, 𝑢)

.?

.0
= 𝑘:60 𝐶, 𝑢 − 𝑘:60 ∗ 𝑓 (t)

𝑑𝑢
𝑑𝑡 = 𝑘9) 𝑢, 𝑤 − 𝑘:60(𝐶, 𝑢)

𝜕𝜙
𝜕𝑡 +

𝜕𝜙
𝜕𝑎 R

𝑑𝑎
𝑑𝑡 = −𝜇 𝑎, 𝐶 𝜙 𝑎, 𝑡

𝑑𝑦
𝑑𝑡 = 𝑘:60 𝐶, 𝑢 − i

$

;
𝜇 𝑎 𝜙 𝑎, 𝑡 𝑑𝑎

• 𝜙 0, 𝑡 = 𝑘:60(𝐶, 𝑢)

• 𝑤 = 𝑤 𝑡 = 𝑢 + 𝑦, 𝑦 𝑡 = ∫$
;𝜙 𝑎, 𝑡 𝑑𝑎

IntegraGon

E t
Particles stay for time 𝑡 − 𝑎 and are removed at age 𝑎. 

Survival function

Hazard rate

Probability density



TCM deriva5on

TCM model using linear trick

𝑦 = 𝑦" +⋯+ 𝑦) and 𝑦) = 𝐸)(𝑡)= 𝑘:60 ∗ 𝑓) 𝑡
𝑑𝑢
𝑑𝑡 = 𝑘9) 𝑢, 𝑤 − 𝑘:60 𝐶, 𝑢

𝑑𝑦"
𝑑𝑡 = 𝑘:60 𝐶, 𝑢 − 𝑘" ⋅ 𝑦" 𝑡

𝑑𝑦! 𝑡
𝑑𝑡

= 𝑘" 𝑦" 𝑡 − 𝑦! 𝑡
⋮

𝑑𝑦) 𝑡
𝑑𝑡

= 𝑘" 𝑦)3" 𝑡 − 𝑦) 𝑡

Using	Erlang	distribution,

𝒇𝒏 𝒂 =
𝒌𝟏𝒂 𝒏3𝟏

𝒏 − 𝟏 !
⋅ 𝒌𝟏𝒆3𝒌𝟏𝒂

𝑑𝑢
𝑑𝑡

= 𝑘9) 𝑢, 𝑤 − 𝑘:60(𝐶, 𝑢)

𝑑𝑦
𝑑𝑡

= 𝑘:60 𝐶, 𝑢 − 𝐸)(𝑡)

Erlang distribution represents time distribution when 𝑛 events happen  

Ok. TCM is derived using a specific probability density.



In applica;on: TMC integra;ng PKPD

𝑦" 𝑦! 𝑦)𝑢 ⋯

Damaged cell (𝑦)Proliferating cell

𝑘:60 𝑘" 𝑘" 𝑘" 𝑘"

𝑘9)(𝑢, 𝑤)

∅

• 𝑘9) 𝑢, 𝑤 = C36

"- 53
5'
D

0
'
0

• 𝑤 = 𝑢 + 𝑦 (total tumor)

• 𝑘:60 𝐶, 𝑢 = 𝑘" R 𝐶(𝑡) R 𝑢

PK	model

.E1
.0

= 𝑘!"𝑞" 𝑡 − 𝑘"!𝑞! 𝑡 , 𝑪(𝒕) =
𝒒𝟏 𝒕
𝑽

.E'
.0

= −𝑘$"𝑞"(𝑡) − 𝑘!"𝑞"(𝑡) + 𝑘"!𝑞!(𝑡) + 𝑣(𝑡)

𝑑𝑢
𝑑𝑡 = 𝑘9) − 𝑘:60

𝑑𝑦"
𝑑𝑡 = 𝑘" R 𝐶 R 𝑢 − 𝑘" ⋅ 𝑦" 𝑡

𝑑𝑦! 𝑡
𝑑𝑡 = 𝑘" 𝑦" 𝑡 − 𝑦! 𝑡

⋮
𝑑𝑦) 𝑡
𝑑𝑡

= 𝑘" 𝑦)3" 𝑡 − 𝑦) 𝑡

TCM from Simeoni et al. 

Ages are discretely considered as n steps



Coxian TCM

Key assumption: 1 − 𝑝" 𝑘" = · · · = 1 − 𝑝) 𝑘),

Letting on 𝑦9=
1678∗J9
"3K' 1'

.

If 𝑝9 = 0, then it returns to the Erlang TCM.

Coxian	density	is	derived	from	Phase	distribution

.J'
.0
= −𝑘"𝑓",

.J9
.0
= 𝑝93"𝑘93"𝑓93" − 𝑘9𝑓9 , 𝑖 = 2,3,⋯𝑛, 0 ≤ 𝑝9 ≤ 1

𝐸) 𝑡 = 𝑘:60 ∗ 𝑓 =|
9L"

)

𝑘:60 ∗ 𝑓9 𝑡

𝑑𝑦"
𝑑𝑡 = 𝑘:60(𝐶, 𝑢) − 𝑘"𝑦", ⋯ ,

𝑑𝑦9
𝑑𝑡 = 𝑝"𝑘"𝑦93" − 𝑘"𝑦9

𝑑𝑢
𝑑𝑡

= 𝑘9) 𝑢, 𝑤 − 𝑘:60 𝐶, 𝑢 ,
𝑑𝑦
𝑑𝑡

= 𝑘:60 𝐶, 𝑢 − 𝐸) 𝑡



Coxian TCM

• Some cells may be removed without age-stages. 
• Relax the condi:on that is number of transit compartments  



Model Simulation

• Left panel : 

Change in the number of age compartments 

• Right panel : 

Fix the number of compartments and change in “p”. 

Data fit quality



Is it enough? 

• Anormal kinetics

• The age of a cell due to drug effect can be considered random variables with pdf 𝑓( 𝑎, 𝑡)
• To describe anormal kinetics, one may apply to sum of exponentials or stochastic models

• Beard et al (1997) showed that a power function can be represented as the sum of scaled basis 
function, i.e

𝑡!" ∝ ∑#$%& 𝑘#"'%𝑡𝑒𝑥𝑝(−𝑘# 𝑡), 𝛼 > 0 using 𝑡!" = %
((")∫+

,𝑢"!% exp −𝑢𝑡 𝑑𝑢, 𝛼 > 0

If is there a distribu5on that sum of power func5ons?

Anormal kine;cs



Frac8onal-order deriva8ve equa8on (FDE) model deriva8on

Let 𝐸> 𝑡 = ∑)L$; 02

M("->⋅))
, 𝛼 ∈ 0,1 .

Let a suvival function 𝑆 𝑡 = 𝐸> − 0
Q

>
, 𝜏 > 0.

Define a kernel 𝐾(𝑡) by

ℒ0 𝐾 𝑡 = ℒ8 J 0
ℒ8(S 0 )

= 𝜏3>𝑠"3>

But density function is not likely to have a closed form. 
Figure. Survival func9on according to 𝛼. Survival 
func9on generates distribu9on. 

wikipedia

Instead, we apply the Laplace transform,  

𝓛𝒕 𝑺 𝒕 = 𝟏
𝒔 𝟏- 𝝉𝒔 :𝜶 . 

Since 𝑓 = − .S
.0

, 𝓛𝒕 𝒇 = 1 − 𝑠ℒ0 𝑆 = 𝝉𝒔 :𝜶

𝟏- 𝝉𝒔 :𝜶 .



𝑬 𝒕 = 𝒌𝒐𝒖𝒕 ∗ 𝒇 𝒕

ℒ0 𝑦 𝑡 = ℒ0(𝑘:60)ℒ0(𝑆 𝑡 ) and ℒ0 𝐸 𝑡 = ℒ0(𝑘:60)ℒ0(𝑓 𝑡 )

𝓛𝒕 𝑬 𝒕 = ℒ0 𝐾 𝑡 ℒ0 𝑦 𝑡 = 𝜏3>𝑠"3> ⋅
ℒ8 X8

':<? 0

Y':<
= 𝝉3𝜶 𝓛𝒕 𝑫𝒕𝟏3𝜶𝒚 𝒕

𝜙 𝑎, 𝑡 = 𝑘:60 𝐶 𝑡 − 𝑎 , 𝑢 𝑡 − 𝑎 𝑒3 ∫3
- = > .> 𝑦 𝑡 = (𝑘:60 ∗ 𝑆)(𝑡)

ℒ0 𝐾 𝑡 =
ℒ0 𝑓 𝑡
ℒ0(𝑆 𝑡 )

ℒ 𝐷0"3>𝑦 𝑡 = 𝑠"3>ℒ(𝑦 𝑡 − 𝑠3>𝑦 𝑡 �
0L$

= 𝑠"3>ℒ 𝑦 𝑡 .

𝑑𝑢
𝑑𝑡 = 𝑘9) 𝑢, 𝑤 − 𝑘:60(𝐶, 𝑢)

𝑑𝑦
𝑑𝑡 = 𝑘:60 𝐶, 𝑢 − 𝑘:60 ∗ 𝑓 𝑡

𝑑𝑢
𝑑𝑡 = 𝑘9) 𝑢, 𝑤 − 𝑘:60(𝐶, 𝑢)

𝜕𝜙
𝜕𝑡 +

𝜕𝜙
𝜕𝑎 R

𝑑𝑎
𝑑𝑡 = −𝜇 𝑎, 𝐶 𝜙 𝑎, 𝑡



Simula8on of frac8onal TCM

𝑦𝑢
𝑘:60 𝜏3>𝐷0"3>𝑦 𝑡

𝑘9)(𝑢, 𝑤)

∅

𝑑𝑢
𝑑𝑡 = 𝑘9) 𝑢, 𝑤 − 𝑘:60(𝐶, 𝑢)

𝑑𝑦
𝑑𝑡 = 𝑘:60 𝐶, 𝑢 − 𝜏3>𝐷0"3>𝑦 𝑡 .

𝐸 𝑡 = 𝑘:60 ∗ 𝑓 𝑡 = 𝜏3>𝐷0"3>𝑦 𝑡

For the model simulaGon, we should assume

𝒚 𝒕 , 𝑫𝒕𝟏3𝜶𝒚 𝒕 differenGable conGnuously.

for saGsfying semigroup property

𝒚[ 𝒕 = 𝑫𝒕𝟏𝒚 𝒕 = 𝑫𝒕𝜶(𝑫𝒕𝟏3𝜶𝒚)

𝑑𝑢
𝑑𝑡 = 𝑘9) − 𝑘:60

𝐷0>𝑧 = 𝜂 ⋅ 𝐶 ⋅ 𝑢 − 𝜏3>𝑧

. 𝐷0"3> 𝑦 = 𝑧

Finally, we have 



Fractional TCM captures data set 



Fractional TCM requires fewer the number of dataset to estimate parameters

FracGonal TCM requires less data to capture full data
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